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Abstract
Background: The gastrointestinal tract is one of the most 
microbiologically active ecosystems that plays a crucial role 
in the working of the mucosal immune system (MIS). In this 
ecosystem, the consumed probiotics stimulate the immune 
system and induce a network of signals mediated by the 
whole bacteria or their cell wall structure. This review is 
aimed at describing the immunological mechanisms of pro-
biotics and their beneficial effects on the host. Summary: 
Once administered, oral probiotic bacteria interact with the 
intestinal epithelial cells (IECs) or immune cells associated 
with the lamina propria, through Toll-like receptors, and in-
duce the production of different cytokines or chemokines. 
Macrophage chemoattractant protein 1, produced by the 
IECs, sends signals to other immune cells leading to the acti-
vation of the MIS, characterized by an increase in immuno-
globulin A+ cells of the intestine, bronchus and mammary 
glands, and the activation of T cells. Specifically, probiotics 
activate regulatory T cells that release IL-10. Interestingly, 

probiotics reinforce the intestinal barrier by an increase of 
the mucins, the tight junction proteins and the Goblet and 
Paneth cells. Another proposed mechanism of probiotics is 
the modulation of intestinal microbiota by maintaining the 
balance and suppressing the growth of potential pathogen-
ic bacteria in the gut. Furthermore, it has been demonstrated 
that long-term probiotics consumption does not affect the 
intestinal homeostasis. The viability of probiotics is crucial in 
the interaction with IECs and macrophages favoring, mainly, 
the innate immune response. Macrophages and Dendritic 
cells (DCs) play an important role in this immune response 
without inducing an inflammatory pattern, just a slight in-
crease in the cellularity of the lamina propria. Besides, as part 
of the machinery that probiotics activate to protect against 
different pathogens, an increase in the microbicidal activity 
of peritoneal and spleen macrophages has been reported. In 
malnutrition models, such as undernourishment and obesi-
ty, probiotic was able to increase the intestinal and systemic 
immune response. Furthermore, probiotics contribute to re-
cover the histology of both the intestine and the thymus 
damaged in these conditions. Probiotic bacteria are emerg-
ing as a safe and natural strategy for allergy prevention and 
treatment. Different mechanisms such as the generation of 
cytokines from activated pro-T-helper type 1, which favor 
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the production of IgG instead of IgE, have been proposed. 
Key Messages: Probiotic bacteria, their cell walls or probi-
otic fermented milk have significant effects on the function-
ality of the mucosal and systemic immune systems through 
the activation of multiple immune mechanisms.

© 2019 S. Karger AG, Basel

Introduction

The gastrointestinal tract (GT) is one of the most mi-
crobiologically active ecosystems containing a mass of bac-
teria crucial for the maturation of immune cells. In the gut, 
a large number of bacteria from the microbiota and those 
that reach the intestine through food intake, coexist with 
each other and with the immune cells associated with the 
lamina propria of the villi. This intestinal microbiota does 
not interact directly with the epithelial cells; however, the 
microbiota stimulates the maturation and functionality of 
the immune cells through their metabolites [1].

There is a group of beneficial bacteria called probiot-
ics. Initially they were defined as “Live microbial feed 
supplements which beneficially affect the host, improv-
ing its intestinal microbial balance” [2]. This definition 
was revised, and currently probiotics are defined as “Live 
microorganisms that when being administered in appro-
priate doses, confer a benefit to the health of the host” [3]. 
Many probiotic bacteria are members of the intestinal mi-
crobiota, some of which have been increasingly incorpo-
rated into foods to improve the gut health by maintaining 
the gastrointestinal microbial balance.

The most common microorganisms used as probiotics 
are lactic acid bacteria (LAB), particularly the genus: Lac-
tobacilli, Streptococci, Pediococcus, Enterococcus, Bifido-
bacteria, and some yeast like Saccharomyces boulardii [4]. 
However, not all the bacteria can be probiotic, as they 
need to be strain-specific.

The beneficial effects of probiotics have been exten-
sively used in improving the host health and for treating 
different infectious and non-infectious pathologies in an-
imal models. Namely, protection against infections [5–7], 
relief of irritable bowel symptoms [8], inhibition of Heli-
cobacter pylori growth [9], prevention of cancer [10–12], 
decrease in gut inflammatory response [13], and preven-
tion of allergies [14, 15]. In humans, although probiotics 
have shown encouraging results in several health condi-
tions like diabetes, multi-drug resistant pathogens, irri-
table bowel syndrome [16–18], exhaustive research is still 
required to incorporate probiotics into human health, 
nutrition, and regulation of different abnormalities.

Mechanisms Induced by Probiotics to Stimulate the 
Immune System

To exhibit beneficial health impact, probiotic mi-
crobes should be able to survive in harsh conditions of the 
stomach and GI tract of humans. This claim may include 
the ability of the probiotics to withstand the gastric juice 
and bile salt, survive passage through the upper GT, mul-
tiply, colonize, and function in the gut [19]. Many mi-
crobes claimed as probiotics could not survive the acidity 
level of gastric juices and bile salt.

One of the ways probiotics promote human health is 
by inhibiting the growth of pathogenic bacteria. Probiot-
ics compete for nutrients for growth and proliferation 
that would otherwise be utilized by pathogens. Several 
studies demonstrated that probiotics such as Lactobacil-
lus rhamnosus strain GG and L. plantarum showed the 
ability to inhibit attachment of enteropathogenic Esche-
richia coli in the GI tract [20].

Additionally, one of the most important properties re-
quired for a potential probiotic strain is the capacity of 
sticking to the epithelial cells. In this regard, Galdeano et 
al. [21] demonstrated using electronic microscopy that 2 
probiotic microorganisms, L. casei CRL 431 and L. para-
casei CNCM I-1518, adhere to the intestinal epithelial 
cells (IECs) through the Toll-like receptors (TLRs) and 
mediate immune stimulation. Following this interaction, 
an increase in the cytokines production such as IL-6 and 
macrophage chemoattractant protein 1 from the IECs oc-
curred, without altering the intestinal barrier; only a 
slight increase in the mononuclear cell infiltration of 
small intestine was observed.

The authors also demonstrated that only fragments of 
the probiotic bacteria, and not the whole bacteria, were 
internalized inside the IECs. As a consequence, the IECs 
initiate a complex network of signals that stimulate the 
immune cells associated with the lamina propria and ac-
tivate mainly the innate response and the cytokines re-
leased by T cells [21].

The intestinal epithelium exhibits numerous physical 
adaptations to separate the host connective tissue from the 
external environment. This physical barrier includes a sin-
gle layer of epithelial cells, their intercellular tight junc-
tions, and the mucus that covers the epithelial surface [22]. 
Additionally, this physical barrier is reinforced by numer-
ous biochemical adaptations such as a glycocalyx formed 
by the secretion and apical attachment of a heavily glyco-
sylated mucin-rich layer by Goblet cells. Together, these 
form a viscous and relatively impermeable sheet on the 
apical surface of the epithelium [23]. In view of this, pro-
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biotics have been shown to strengthen the intestinal bar-
rier by increasing the number of Goblet cells which rein-
force the mucus layer [24]. Moreover, several Lactobacil-
lus species have been shown to increase mucin expression 
in human intestinal cell lines [25, 26]. VSL#3, which con-
tains some Lactobacillus species, increases the expression 
of MUC2, MUC3, and MUC5AC in HT29 cells [27]. 
Moreover, L. acidophilus A4 cell extract increased the 
MUC2 expression in HT29 cells, and this effect was inde-
pendent of probiotic adhesion to the cell monolayer [28].

One of the ways probiotics promote human health is 
by inhibiting the growth of pathogenic bacteria through 
the synthesis of low molecular weight compounds such as 
organic acid and large molecular weight antimicrobial 
compounds termed bacteriocins [29]. Organic acids are 
acetic and lactic acids. These compounds have been prov-
en to exhibit strong inhibitory effects against pathogenic 
gram-negative bacteria such as H. pylori [30]. Some bac-
teriocins produced by probiotics are lactacin B from L. 
acidophilus, bifidocin B produced by Bifidobacterium bif-
idum NCFB, plantaricin from L. plantarum, and nisin 
from Lactococcus lactis [31].

Paneth cells, characteristic epithelial cells of the small 
intestine located at the bottom of the intestinal crypts, are 
responsible for the secretion of diverse antimicrobial pep-
tides like lysozyme, secretory phospholipase A2, defen-
sins, defensin-like peptides (elafin and SLPI), and cathe-
licidins [32]. B. longum and a prebiotic (Synergy 1) treat-
ment in patients with active UC provoked the release of 
defensins from epithelial cells [33]. In addition, the uni-
directional peristaltic movements of the intestine also aid 
in preventing the entry of microbes from the dense distal 
gut to the small intestine.

Besides, several studies have indicated that probiotics 
are able to reinforce intestinal barrier integrity through 
increased gene expression in tight junction signaling. S. 
thermophilus and L. acidophilus limited adhesion and in-
vasion of enteroinvasive E. coli in HT29 and Caco-2 cells 
by the maintenance (actin, ZO-1) or enhancement (ac-
tinin, occludin) of cytoskeletal and tight junctional pro-
tein phosphorylation [34]. Dai et al. [35] showed that 
VSL#3 probiotics protected the epithelial barrier and in-
creased the tight junction protein expression in vitro and 
in vivo by activating the p38 and ERK signaling pathways.

Recently, Cazorla et al. [36] observed an increase in 
Paneth cells at the base of the small intestinal Lieberkühn 
crypt by the oral administration of probiotics. Accord-
ingly, an increase in the antimicrobial activity of the in-
testinal fluids that lead to a breakdown of the bacteria was 
observed by using electronic microscopy. Habil et al. [37] 

concluded that probiotic strains differentially regulate 
human beta 2 defensin mRNA expression and protein se-
cretion. These modulations were guided by inflammatory 
stimulus and cytokine environment.

Few studies reported the bactericidal effect of E. fae-
cium supernatant against an enteroaggregative E. coli, in-
ducing membrane damage and cell lysis [38]. This bacte-
rium has the ability to produce enterocins, which in turn 
can be applied as food biopreservatives [39, 40].

Antimicrobial peptides could be considered in the fu-
ture as a new class of therapeutics to induce lesser resis-
tance and have a selective antimicrobial activity to protect 
the host.

Probiotics modulate the composition of gut microbial 
species by maintaining the balance and suppressing the 
growth of potential pathogenic bacteria in the gut. It has 
been reported that L. acidophilus or L. casei increased 
LAB with a concomitant decrease of fecal coliforms and 
anaerobes [41, 42]. In addition, a study by Li et al. [43] 
found that probiotics caused shifts in the gut microbiota 
composition toward specific beneficial bacteria, for ex-
ample, Prevotella and Oscillibacter. These bacteria are 
known to produce anti-inflammatory metabolites, which 
subsequently decreased the Th17 polarization and fa-
vored the differentiation of anti-inflammatory Treg/Type 
1 regulatory T (Tr1) cells in the gut.

A widespread requirement of some probiotic effects is 
their viability, which means that they must be resistant to 
acid and bile secretions. In light of this, is the probiotic 
effect on the gut epithelial cells mediated by particles or 
by the whole LAB? Do the probiotics have to be viable for 
immune stimulation? It was demonstrated that only the 
viable bacteria are able to interact with IECs, and the pro-
biotic cellular fragments are phagocyted by macrophages 
and dendritic cells (DCs) associated with the Peyer’s 
patches (PPs) or the lamina propria of the villi. By con-
trast, non-viable bacteria are cleared fast from the intes-
tinal lumen [21]. 

How long must these bacteria or their fragments be in 
contact with the immune cells for their stimulation? To 
address this question, Galdeano et al. [21] performed an 
assay using fluorescent probiotic bacteria and analyzed 
the presence of fluorescence inside the immune cells from 
PPs, small intestine villi, and lymph nodes of the large in-
testine. They found that probiotic particles remain until 
72 h inside the immune cells, in a similar manner to any 
particulate antigen. As a consequence of this interaction, 
probiotics induce an increase in the expression of the re-
ceptors TLR2 and mannose (CD206) on the surface of 
macrophages and DCs. These results reinforce the idea 
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that the main activation induced by probiotics is on the 
innate immune response [44]. This fact is a key for the 
later stimulation of an adaptative immune response.

Probiotics confer protection against pathogen coloni-
zation by inducing their direct killing, competing with 
nutrients, and enhancing the response of the gut-associ-
ated immune repertoire [45–50].

More important, the probiotic oral administration 
protects against infection in gut distant mucosas like 
bronchi and urogenital mucosas [51–53]. A study involv-
ing 54 women reported that daily probiotic consumption 
for 6 months enhanced the clearance of human papillo-
mavirus, which is known to cause cervical cancer [54]. In 
animal models, oral probiotic administration protects 
against Salmonella typhimurium infection by activating 
the phagocytic and microbicidal activity of peritoneal and 
spleen macrophages [55]. Probiotic lactobacilli can also 
significantly reduce the risk of antibiotic-associated diar-
rhea in children and adults [56].

The gut barrier plays a crucial role by spatially com-
partmentalizing bacteria to the lumen through the pro-
duction of mucus and secretory immunoglobulin A 
(sIgA). The IgA antibody is a major functional compo-
nent of the humoral adaptive immune system, specifical-
ly at mucosal sites. The antibodies are predominantly 
produced by plasma cells localized in the intestinal lami-
na propria as dimers linked by the connecting chain. The 
binding of dimeric IgA to the polymeric immunoglobulin 
receptor contributes to its transportation through IECs 
and secretion into the intestinal lumen [57]. The secre-
tory component ensures the binding of sIgA to the mucus 
layer site, where this immunoglobulin leads to the im-
mune exclusion of mucosal antigens [58]. The sIgA has 
an important role, not only in the gut lumen, but also in 
the underlying tissue, translocating via M cells, to PP, to 
preserve the local homeostasis [59–61]. In the intestine, 
sIgA antibodies bind to commensal and pathogens bacte-
ria, and toxins, blocking them through a non-inflamma-
tory process commonly known as “immune exclusion” 
[62, 63]. Additionally, sIgA antibodies facilitate the sam-
pling of intestinal environments by DCs in the subepithe-
lial dome region of the PPs. Major efforts are underway 
to understand the generation, distribution, and mainte-
nance of IgA antibody-secreting plasma cells in intestinal 
tissues. In this regard, oral administration of probiotics 
increased the number of IgA+ cells in the lamina propria 
of the intestine [64] and also in bronchus and mammary 
glands [13, 65]. These studies demonstrated that probiot-
ics induce the IgA cycle, reinforce, and maintain the im-
mune surveillance in mucosal sites distant from the gut.

T lymphocytes also play an important role in protect-
ing against pathogenic microorganisms in the digestive 
system, and in regulating the responses against food and 
commensal antigens. Besides, the adaptive immune sys-
tem is profoundly shaped by the presence of the commen-
sal intestinal microbiota. This includes increases in the 
size and number of germinal centers in PPs, IgA-secret-
ing plasma cell numbers, lamina propria CD4+ T cells, 
and αβ T cell receptor-expressing intraepithelial CD8αβ+ 
T cells [66]. In healthy mice and humans, the presence of 
commensal microorganisms in the intestine is tolerated 
without an acute neutrophils infiltrate. CD4+ regulatory 
T (Treg) cells are an essential component of this mutual-
ism.

DCs are immune cells with characteristic projections 
(dendrites), acquired during development, and are spe-
cialized for antigen presentation to B and T cells. CD4+ T 
cells will then differentiate in response to cytokine to dif-
ferent subsets: TH1, TH2, TH17, and regulatory T cells. 
Probiotic bacteria regulate mucosal immune responses 
through the induction of different cytokines. This effect 
is dependent on the probiotic strain itself [67–69]. After 
oral probiotic administration, cytokines produced by T 
cells in the lamina propria of the small intestine were se-
creted in slightly higher levels than those observed in the 
presence of commensal bacteria; specifically IFN-γ and 
TNF-α cytokines [70–73]. Through the production of cy-
tokines, probiotics trigger the stimulation of an adaptive 
immune response and establish a network of signals 
among the different immune cells. Some probiotics may 
alter cytokine production by modulating cellular signal 
transduction. They can either block the degradation of 
the inhibitor I-κB and interfere with proteasome func-
tion, or promote nuclear export of NF-κB subunit RelA, 
through a PPAR-γ-dependent pathway [74, 75]. IL-10 
produced by Th2 lymphocytes and macrophages has 
been reported to be the main immunomodulator cyto-
kine induced by L. casei CRL 431 to maintain the gut ho-
meostasis [55, 76].

In recent years, there has been an increasing interest in 
probiotic fermented milk (PFM). Fermentation may im-
prove the digestibility and nutritional quality of food 
through the enrichment of food substrates like vitamins, 
proteins, essential amino acids, and essential fatty acids. 
In this sense, using fermented milk containing probiotic 
bacteria (PFM), Maldonado Galdeano et al. [77], ana-
lyzed the role of the cytokine released by probiotics on 
immune cells distant from the intestine. The administra-
tion of PFM increases the phagocytic and microbicidal 
activity of the peritoneal and spleen macrophages. Inter-
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estingly, probiotics also stimulate the systemic immune 
response, with an increase in specific antibody produc-
tion. These antibodies have been shown to play a critical 
role in decreasing the spread of pathogenic bacteria to the 
liver and the spleen after a challenge with S. typhimurium. 
This effect has shown to be more remarkable in an under-
nourishment model [78].

Malnutrition is a systemic alteration caused by an im-
balance between the nutrient intake and energy require-
ments. It affects the immune response, causing a signifi-
cant decrease in the defense mechanisms and making the 
host more susceptible to infections. Hence, malnutrition 
becomes a good model to study the probiotic impact on 
the host’s health. On an undernourishment mice model, 
the administration of PFM as a re-nutrition diet reconsti-
tuted the intestinal mucosa architecture and stimulated 
local and systemic immunity [78]. Considering the fact 
that malnutrition causes a significant impairment of the 
immune system, and the thymus being one of the most 
affected organs, thymus histology restoration by probi-
otic consumption becomes relevant. The authors also ob-
served a decrease in the cellular apoptosis of this organ 
and a recovery of the CD4+ and CD8+ single-positive thy-
mocytes. Besides, an increase in different cytokines in the 
thymus of the mice fed with PFM was also reported [78].

Although information about the minimum effective 
concentration is still controversial, it is generally accepted 
that probiotic products should have a minimum concen-
tration of 106 CFU/mL or gram and that a total of 108–109 
probiotic microorganisms should be consumed daily 
[79]. Importantly, the long-term consumption of PFM 
has been proved to exert immunomodulatory effects to 
maintain the intestinal homeostasis without secondary 
effects. The gut immunity balance was preserved and 
down-regulated by cytokines such as IL-10, avoiding gut 
inflammatory immune response [80].

The beneficial effect of probiotics in allergy processes 
is well described [81–83]. The IgE increase is one of the 
most relevant signs that characterize this process. Probi-
otics have been shown to be efficient in decreasing this 
immunoglobulin, as well as in alleviating symptoms. 

However, the mechanisms mediated for the alleviation of 
allergy have not been described. In a respiratory allergy 
experimental model, Velez et al. [14] demonstrated that 
probiotics induce a clear Th1 balance favoring the pro-
duction of IgG instead of IgE immunoglobulin and in-
creasing the levels of IL-10 and IFN-γ cytokines. Besides, 
by a co-localization study, the authors postulate that the 
Th1 cells have been shown to be responsible for the IFN-γ 
release.

Furthermore, in vivo studies showed that the admin-
istration of probiotics is effective in improving lipid pro-
files, including the reduction of adipose tissue, serum/
plasma total cholesterol, LDL-cholesterol and triglycer-
ides, and increasing the HDL-cholesterol [84, 85]. Clini-
cal trials confirmed that probiotics reduce blood glucose 
and insulin levels in patients with diabetes. They can also 
improve Hb1Ac and insulin resistance. Mechanisms for 
these obesity-related effects include regulation of im-
mune differentiation and insulin sensitivity, inhibition of 
pathogenic bacteria adhesion to the intestine and trans-
location to adipose tissue, and improvement of intestinal 
barrier function [86].

The unquestionable effect of probiotics as anti-cancer 
agents seems to be due to a combination of multiple 
mechanisms. Probiotics change the composition and me-
tabolites of the intestinal flora, reduce the number of 
harmful bacteria, display anti-genotoxic and anti-gene 
mutation function, and inhibit enzymes in the colon. Be-
sides, through the interaction with colonic cells probiot-
ics regulate the immune system [87]. Probiotics may pre-
vent neoplastic transformation by protecting the mucosal 
and GT barrier stability, competing with pathogenic bac-
teria, reducing anti-inflammatory reactions, degrading 
potential carcinogens, affecting cell proliferation and 
polyamine metabolism at gastric mucosa [88].

Conclusion

Based on the results obtained, the immune mechanisms 
elicited by the probiotics are summarized in Figure 1.

Fig. 1. Immunomodulatory mechanisms exerted by probiotic bac-
teria in the gut mucosa. Probiotic bacteria adhere to IECs and ac-
tivate them through the pattern recognition receptors. In this sce-
nario, IECs release cytokines and chemokines that create a micro-
environment in the gut lamina propria, bronchi, and mammary 
glands, allowing the clonal expansion of B cells to produce IgA. At 
the same time, cytokines stimulated by probiotic bacteria lead to 
the expression of Treg cells (Foxp3+) that maintain the immune 
homeostasis in the gut mucosa (unpublished data). PPs macro-

phages release cytokines after probiotic bacteria stimulation. How-
ever, they maintain a characteristic state of hyporesponse to com-
mensal microbiota. Besides, after probiotic stimulation, macro-
phages distant from the GT such as peritoneum and spleen, 
increase their functionality (cytokines production, phagocytic and 
microbicidal activity) reinforcing the innate immune response. 
Probiotic bacteria administration primes a Th1 profile response, 
with high levels of IL-10 and IFN-γ that play an important role in 
the immunomodulation. PP, peyer patch; Treg, T regulatory.

(For figure see next page.)
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– Probiotics interact with IECs. Due to the privileged 
position of those cells in the GT, they act as active sen-
sors, setting a dialogue between the host and the exter-
nal environment. Probiotic bacterial fragments can 
be  internalized into the IECs and produce the subse-
quent activation of immune cells associated with the 
gut. This result led to infer that the cell wall of the pro-
biotic bacteria activates the immune system, an activa-
tion mediated by TLRs. New studies have been per-
formed with this bacterial structure to confirm this hy-
pothesis. 

– Other important cells that play a pivotal role in the 
epithelial barrier are the Paneth cells. Probiotics have im-
portant effects on these cells, increasing their number in 
the intestinal crypts with the aim of reinforcing the epi-
thelial barrier.

– The time of permanence of the probiotic bacteria 
in the intestinal lumen (72 h) is enough to induce chang-
es in the gut immune cells, increasing the number of 
macrophages and DCs of the lamina propria, and en-

hancing their functionality, reflected in cytokines pro-
duction.

– Importantly, the activation of immune cells does not 
alter intestinal homeostasis, probably by the regulatory 
cells activation that maintains a tolerogenic environ-
ment. These facts ensure the safety of probiotics con-
sumption for long periods of time without adverse ef-
fects. The cytokine microenvironment generated by im-
mune cells in response to probiotics favors an increase in 
the gut IgA+ cells. Besides, the cytokines induce locally, 
influence the activity of immune cells distant from the 
gut-like macrophages from spleen and peritoneum, and 
also other mucosa sites such as bronchi and mammary 
glands.

– In malnutrition processes, the probiotic administra-
tion contributes to restore the thymus histology and stim-
ulates the adaptative immune response.

– Probiotics induce a clear balance to a Th1 profile 
that is essential for the control of an allergy process 
(Fig. 2).

Immune mechanism mediated by oral probiotic administration in the control of
allergy at bronchial level.
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Fig. 2. Immune mechanisms mediated by oral probiotic adminis-
tration to control allergy at bronchial level. The probiotic oral ad-
ministration induces activation of DCs at the gut level, with an 
IL-12 release that balances the adaptative response to a Th1 profile 
at the bronchus. The increase in the expression of CD4 and IFN-γ 
on Th1 cells leads to an enhancement on IgG production instead 

of IgE. Treg cells did not increase, so the regulatory effect exerted 
by the probiotic seemed to be mediated by IL-10, produced by Th1 
and Th2 cells. Mast cells are also increased to mediate the tissue 
repair. In parallel, the Th2 response was significantly diminished 
with a decrease in the IL-4, IL-13, and IgE production. DC, den-
dritic cell; Treg, T regulatory.
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– Probiotic bacteria, their cell walls or PFM induce sig-
nals in the intestine that improve the behavior of the im-
mune system and the host’s health.

– The IECs would be the main target of the probiotics, 
and together with the innate immune cells associated 
with the intestine would modulate the mucosal and sys-
temic immunity.

– Probiotic bacteria appeared as an effective tool for 
the maintenance of the intestinal homeostasis and the 
stimulation of the mucosal immune system, both at the 
gut and distant sites.
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